Extensions 1→N→G→Q→1 with N=C23×F5 and Q=C2

Direct product G=N×Q with N=C23×F5 and Q=C2
dρLabelID
C24×F580C2^4xF5320,1638

Semidirect products G=N:Q with N=C23×F5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C23×F5)⋊1C2 = (C2×F5)⋊D4φ: C2/C1C2 ⊆ Out C23×F540(C2^3xF5):1C2320,1117
(C23×F5)⋊2C2 = C2×D4×F5φ: C2/C1C2 ⊆ Out C23×F540(C2^3xF5):2C2320,1595
(C23×F5)⋊3C2 = C22×C22⋊F5φ: C2/C1C2 ⊆ Out C23×F580(C2^3xF5):3C2320,1607

Non-split extensions G=N.Q with N=C23×F5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C23×F5).1C2 = C22⋊C4×F5φ: C2/C1C2 ⊆ Out C23×F540(C2^3xF5).1C2320,1036
(C23×F5).2C2 = D10⋊(C4⋊C4)φ: C2/C1C2 ⊆ Out C23×F540(C2^3xF5).2C2320,1037
(C23×F5).3C2 = C2×D10.3Q8φ: C2/C1C2 ⊆ Out C23×F580(C2^3xF5).3C2320,1100
(C23×F5).4C2 = C22×C4⋊F5φ: C2/C1C2 ⊆ Out C23×F580(C2^3xF5).4C2320,1591
(C23×F5).5C2 = C22×C4×F5φ: trivial image80(C2^3xF5).5C2320,1590

׿
×
𝔽